Have you ever wondered what you could do to help combat climate change? Priya Donti did, too — and now she's researching energy optimization and assembling folks in her community to tackle the defining problem of our future.
Read on for the transcript!
Hi, I’m Monte Zweben, CEO of Splice Machine. You’re listening to ML Minutes, where cutting-edge thought leaders discuss Machine Learning in one minute or less. Let’s get started!
This episode, our guest is Priya Donti, a PhD student in Computer Science and Public Policy at Carnegie Mellon, as well as the co-founder and chair of Climate Change AI. Welcome Priya!
0:30 Priya Thanks Monte.
0:35 Monte
Your work lies at the intersection of machine learning and electric power systems and climate change. Tell us about your journey. How did you get to where you are now?
0:42 Priya
Yeah, so in high school, I actually took a one week class on sustainability that was taught during my intro biology class during my first week, and we had a lesson on climate change. And, I mean, we learned, of course, what climate change is, how it's affecting our planet. And importantly, the fact that climate change is going to most disproportionately affect those who are already disadvantaged. And so I really knew from then that I wanted to work on climate change. And when I got to college, I got really interested in computer science, I had a core computer science class that was really well taught and was, you know, just a ton of fun. And I had no idea how I was going to bring these things together. So I had a college mentor who was looking out for ways I could try to do this. And they passed along a paper at some point called putting the smarts into the smart grid about machine learning and energy systems. And I've been working on that topic ever since.
1:41 Monte
Terrific, we need more of that. So given that thrust that you've been doing ever since your high school career, what was the inspiration for co-founding Climate Change AI?
1:55 Priya
So while I've been working on this topic for a few years, I really got in depth into it right after college. I spent a year traveling around the world and interviewing people about next-generation energy systems. But there wasn't really when I started my PhD, a huge community of people who are working at this intersection of machine learning and climate change. And I went to a conference at some point, I was presenting some of my work. And as a result got invited to a lunch that somebody was holding on machine learning and climate change. And I was like, really, like, they're actually people, other people who are thinking about this. And I got invited to present, I walk into the room, there were 50 other people there. And we all got to talking. And basically, after meeting the organizer, he reached out to me afterwards, and we decided to write a paper called Tackling Climate Change with Machine Learning. And after that came out, we decided to start climate change AI.
2:54 Monte
That's terrific--you created your own community, you wrote about it with your colleagues, and you created an entire organization. That's fantastic. So along with Climate Change AI, you're doing some fundamental research in the electricity sector, perhaps you could tell us a little bit about your research and using machine learning to optimize electricity production, distribution, transmission, and give us a little background on that.
3:22 Priya
One fundamental failure with a lot of machine learning methods is that they are terrible at dealing with, you know, physics or hard constraints or any real hard requirements on the way they operate. And this is a real challenge. When it comes to electricity systems, I mean, electricity systems have to satisfy fundamental physical equations that govern how power flows throughout them, for example, and if you don't satisfy those, you get a power blackout. And so, what I think a lot about is, how do we bridge the knowledge we already have about power systems? How do we take that physics? And how do we take the data that we have that we would want to use machine learning with? And sort of bring these two worlds together? So how do we do sort of bridge power system optimization and physics with the way we do machine learning, and I look at this specifically in the context of deep learning, so to throw some jargon in there, how do you create neural network layers that actually represent power system optimization models?
4:23 Monte
Fantastic. So, your research is fundamentally introducing physical laws into deep learning models? Can you give us one or two examples of how you do that?
4:36 Priya
Sure. So, um, basically, a power system optimization model generally tries to kind of figure out how much power each power generator on the grid should produce in order to make sure that all the demand on the power grid is satisfied and these physical equations of the grid are also satisfied. So this is an optimization problem and optimization problems have something associated with them called KKT conditions. But these basically are equations that describe the optimal solutions of this optimization problem. And the upshot is basically that we figure out a way to take derivatives through these KKT conditions. And this is sort of the holy grail of deep learning, which is that in order to put something into a neural network, you have to be able to take derivatives through it. So that's the general idea, we figured out a kind of a clever way to take derivatives through these power system optimization models, so we can sort of stick them into neural networks.
5:36 Monte
Excellent, I think I understand. So you figured out a way to model the hard physical constraints, by finding ways of detecting derivatives? I presume that might be because you you need to do gradient descent search in order to train the models. And that is how you incorporate those those physical conditions?
5:40 Priya
Absolutely.
5:42 Monte
Why is this so important, though, maybe you can help our listeners understand, why is it so important to model these physical constraints in the middle of a deep learning model?
6:11 Priya
Yeah, so one kind of challenge that you see in power systems is that these physical models are actually really, really expensive to run, if you run the whole thing. And as you have more and more renewables coming on to the power grid, that is challenging, because you have renewables that are changing from moment to moment, the amount of power that they produce, and you have to run these optimization problems more and more often, and get there slow. And so there have been a lot of approaches that have tried to just replace these optimization models entirely with machine learning models, because machine learning models are fast to run. But as I sort of talked about earlier, if you have a machine learning model that is operating on the grid, and isn't able to satisfy these fundamental equations of the power grid, the power grid's gonna break. And so the idea is that it's important to be able to incorporate some of these kind of important constraint some of the important parts of the optimization model into your machine learning model, so that your machine learning model can still be fast, but that it's sort of preserving these important properties of the power grid.
7:13 Monte
I understand; I think what we're talking about here is a trade off of speed versus accuracy. And that traditional optimization methods may be searching through a space of optimal solutions, but always respecting the physical constraints, whereas the machine learning systems are statistically pattern-matching, and may miss a physical constraint. And now you're trying to fix that problem and make sure that the machine learning models are providing that speed test, but still reflecting their physical realities.
7:40 Priya
Absolutely.
7:45 Monte
What tools are you using for this research?
7:51 Priya
So, in terms of kind of methodological tools, um, I use a lot of convex optimization theory and tools from optimization theory, and things like multivariate calculus in order to actually, you know, take these derivatives through these optimization problems. And in terms of the implementation, I use, in particular, one deep learning library called PyTorch. In particular sense, in this research, I have to sort of write custom deep learning layers. PyTorch has a really nice interface to do that, and to then be able to sort of present that neural network layer that we've developed in a way such that somebody else could just plug it into their own model. So that's what I end up using.
8:36 Monte
Excellent. Okay, so this has been a fantastic conversation about your research area, and what you've done with deep learning. But perhaps, more abstractly, what's one specific challenge that you faced along the way in this research?
8:52 Priya
So, I think when doing research in academia, that is really meant to be deployed, there can often be a disconnect between, you know, the research problems you're working on, and what is actually needed in industry. Or even if you are working on a research problem that is really relevant to industry, how do you get that deployed in the real world? Jack Kelly, the founder of a nonprofit called Open Climate Fix, he's been known to have said that, "If you publish a paper on research, the climate doesn't see those effects. The climate only sees effects if things are actually deployed on the ground." And so yeah, that can definitely be a challenge, bridging that gap between research and deployment.
9:40 Monte
How do you overcome that? Is this about integration into distributed control systems and SCADA systems? Or are there other elements that you needed to look at in order to really impact the world versus just publish papers?
9:57 Priya
Sure, so I mean, at a kind of macro level, one issue that we're often dealing with is that energy system operators are using, you know, these legacy systems, these older systems that, you know, and older processes, where this is how they've optimized the power grid forever. And this is how they've made sure that the power grid doesn't black out forever. Um, and so there's just simply some kind of, you know, challenges to figure out how do new machine learning methods or new methods at all either integrate with those systems or replace those systems? And that comes with engineering challenges: How do you actually integrate these things, technically, but also regulatory challenges. I mean, if something goes wrong on the power grid, somebody has to account for that. And there has to be some audit of that. So there are a lot of challenges like that, just in terms of how this works at all. I think for an individual researcher, there are lots of challenges around how do you make sure that you're adequately getting feedback from industry, are adequately interacting with industry practitioners? And that's a separate kind of challenge in itself.
11:02 Monte
Thank you. Well, what's next, in your research? What do you see as the next phase that you're going to study?
11:08 Priya
So I think I'm still really excited about the direction of hybrid physical modeling in general. So we've talked about this in the context of power systems, how do you integrate power system optimization models into machine learning models. But there are sort of other kinds of interesting either physical models or information from other fields that can be integrated into machine learning models that can help them perform better at a particular task. And so one kind of challenge I've been looking at recently, is that reinforcement learning algorithms, when they are applied to some kind of control tasks are often very powerful, but again, often come with no guarantees on whether they're going to perform well, or whether they're going to destabilize your system entirely. And so some of my recent work or ongoing work has looked at how to incorporate guarantees and guaranteed methods from other fields, like control theory, into the way that we do reinforcement learning.
12:12 Monte
Well, that's really intriguing. So you're going to try to combine control theory, and reinforcement learning together, that takes it one step further from just building some custom hidden units in a deep learning method. Now you're looking at a search space, and incorporating two fundamentally different approaches to similar problems.
12:32 Priya
Absolutely.
12:34 Monte
Okay. So what do you think is the single most important thing that can help us mitigate climate change?
12:41 Priya
Um, I'm going to turn that question back around and say there is no one single most important thing. In particular, emissions come from many, many different places, right, you have emissions coming from the electricity sector, and transportation. from buildings, from agriculture and land. And so there's basically just going to be a need to be a ton of different approaches and a ton of different sectors that will all need to come together in order to to tackle climate change. So yeah, I definitely get asked this question a lot by people who want to figure out what is the one problem that I should be working on? And my answer to that is usually, you know, go work on the problems that most match your interests, and also where you feel like maybe you are well equipped in terms of your networks to actually be connected to people who work on those problems directly, or know how to think about those problems directly. And so yeah, use your skills, your networks, your interest and work on something because we're going to need a ton of different things to be worked on.
13:41 Monte
That's, that's very helpful. And I think what you're doing with Climate Change AI is helping to educate everyone about the multitude of ways that we can use AI and computer science and in general, address some of these concerns and some ways that machine learning and AI can can help with them.
13:56 Priya
Thank you.
14:00 Monte
Well, Priya, it's been a pleasure. Thanks so much for joining us today.
Priya 14:06
Thank you so much for having me.
14:16 Monte
As a thank you for listening, we’ll be doing a holiday GIVEAWAY where you could win an Apple watch! To enter, send a text to someone you know with a link to ML Minutes and a reason why they should listen, and send a screenshot to any of our social media accounts, or email it to us at mlpodcast@splicemachine.com. The more friends you text, the more times you’ll be entered in the sweepstakes to win. Enter between now and Christmas. More information at mlminutes.com.
If you want to hear more about how Priya is using physics-based activation functions in her research, check out our bonus minutes! They’re linked in the show notes below, and on our website, MLMinutes.com
On our next episode, we’ll discuss operationalizing machine learning, or MLOps, with industry analyst Andrew Brust, coming to you Wednesday, December 9th.
ML Minutes is produced and edited by Morgan Sweeney. I’m your host, Monte Zweben, and this was an ML Minute.
Comments